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The standard OLS regression table (in R)



Interpreting Regression tables: 
Above the table - Call

This section shows the 
“Call” – the model we 
gave R to estimate

Here, we ran a regression 
of monthly wages (in $) 
on education (in years), a 
dummy (0-1) variable 
whether a respondent is 
male, and the number of 
hours spent playing 
videogames in one’s 
childhood.



This section shows the “Call” – the model we gave R to estimate

Here, we ran a regression using data collected at the level of individual respondents. We ran a 
regression of monthly wages (in $) on education (in years), a dummy (0-1) variable whether a 
respondent is male, and the number of hours spent playing videogames in one’s childhood.

Wage! = 𝛼 + 𝛽" ⋅ education! + 𝛽# ⋅ male! + 𝛽$ ⋅ videogames! + 𝜖!

This linear regression can serve serveral purposes:
1. To predict an individual’s wage, based on their information on other variables
2. To test whether any of the right-hand side variables is related to wages
3. To quantify the direction and strength of the relation between RHS variables and wages
4. To – cautiously – find a causal estimate of the effect of a RHS variable on wages.

Interpreting Regression tables: 
Above the table - Call



This section gives you 
information about the 
residuals. Residuals are 
the difference between 
your estimated value of y 
from the model, and the 
actual data. 

Here, the smallest 
residual is -361.40: There 
is one individual for 
whom we predicted 
(based on their 
education, gender, and 
video game history) a 
wage that was 361$ more 
than their actual wage.

Interpreting Regression tables: 
Above the table – Residuals



Residuals are simply the difference 
between the predicted y-value from the 
model to the actual data – measured in y-
direction.

You may remember that OLS is a method 
that minimizes the sum of the squared 
residuals!

Interpreting Regression tables: 
Above the table – Residuals



”Good” residuals: The residuals are randomly 
distributed around the estimated regression 
line

“Bad” residuals: The residuals are 
systematically related to each other: First 
negative, then positive, then negative. We have 
chosen the wrong model to fit the data!

Interpreting Regression tables: 
Above the table – Residuals



This section can give you 
a first idea whether your 
residuals are “ok”. 

If the first quartile (Q1) 
and the third quartile (Q#) 
of the residuals are far 
apart, this provides some 
evidence that the 
residuals are not 
“randomly” distributed 
around 0, but may have a 
systematic relationship.
Similarly, if the median is 
far away from zero, this 
may indicate that your 
model is not appropriate.

Interpreting Regression tables: 
Above the table – Residuals



This section is the most 
important one. It gives 
you information on the 
coefficients you 
estimated with the 
regression. It also gives 
you information on the 
precision of the estimate, 
and information on 
whether the estimated 
coefficient is significantly 
different from zero.

Interpreting Regression tables: 
Main table



We start with the intercept.
First, let’s note that we can write the regression model as:

Wage! = 𝛼 + 𝛽" ⋅ education! + 𝛽# ⋅ male! + 𝛽$ ⋅ videogames! + 𝜖!
↔ 𝑬 Wage𝒊 education𝒊,male𝒊,videogames𝒊 ] = 𝛼 + 𝛽" ⋅ education! + 𝛽# ⋅ male! + 𝛽$ ⋅ videogames!

So then, the intercept 𝛼 is simply the expectation of wages, given that all right-hand side (independent) 
variables are zero. 
In other words: What wage level would we expect for a (hypothetical) individual with 0 years of education, 
who is female, and who played 0 hours of videogames per week during their childhood?
Looking at the “estimate” column, the answer is: We would expect a monthly wage of around $2,000.

Interpreting Regression tables: 
Main table – Intercept



What about the other numbers? Standard error
The second column gives the standard error for the estimate of the intercept. This is a measure of 
precision of the estimate: The smaller the standard error, the more precisely did we estimate the intercept. 

The standard error on any coefficient answers the question: Given the kind of sample you collected, if you 
were to collect a different sample (from the same population) many, many times, how far away from the 
coefficient would your new coefficients be, on average?

Interpreting Regression tables: 
Main table – Standard error



How to use the standard error - t-statistic
If we divide the estimated coefficient by its standard error, we get the corresponding t-statistic. Here, 
t=2001/9.18=218. 

We use the t-statistic to test the null hypothesis that the coefficient is equal to zero. If the null hypothesis 
is true, the estimator divided by its standard error is distributed according to a t-distribution (similar to a 
normal distribution for large enough sample sizes), and it would be rare to observe very small or very large 
values of the t-statistic.

A rule-of-thumb critical value for the t-statistic is 2. If the t-statistic (in absolute value) is greater than 2, 
the coefficient is significantly different from zero at the 95% confidence level.

Interpreting Regression tables: 
Main table – t-statistic



t-statistic - Interpretation
If we divide the estimated coefficient by its standard error, we get the 
corresponding t-statistic. Here, t=2001/9.18=218. 

Since |t|>2, we reject the nul hypothesis. We say: The estimated intercept is 
significantly different from zero at the 95% level.

Interpreting Regression tables: 
Main table – t-statistic



Interpreting Regression tables: 
Main table – t-statistic (and p-value)

T-Distribution



How to use the standard error – confidence intervals and other tests
We could also use the standard error to create a (95%) confidence interval for the 
estimated intercept. 

The 95% CI is simply [9𝜶 − 𝟐 ∗ 𝑺𝑬( @𝜶), 9𝜶 + 𝟐 ∗ 𝑺𝑬 @𝜶) . In our case, this is
[2001- 2*9.18, 2001+2*9.18] = [1983, 2018]. At the 95% confidence level, we can 
reject the null hypothesis that the intercept is equal to 1982.

A 95% confidence interval means: If we were to draw many, many samples, we 
would see that 95% of these intervals contain the TRUE parameter of interest.

Note: this is not the probability that the true parameter of interest is contained in 
the confidence interval!

Interpreting Regression tables: 
Main table – Confidence intervals



p-value
The p-value is directly related to the t-statistic. For a given value of the t-statistic, 
if gives the area of the t-distribution that is further to the extreme of that value –
in the example to the right, for a t-statistic of 2, it gives the red area.

The p-value is the probability of observing our estimate or an estimate more 
extreme than ours, given that the null hypothesis is actually true.

In the case here, if the true intercept were 0, the probability of observing (and 
estimating) an intercept of 2001.17 is less than 2*10^-16, i.e. extremely low.

If the p-value is below our significance level (by convention often 0.05), we say 
that our estimate is significantly different from zero. This is the case here.

Interpreting Regression tables: 
Main table – p-value



What about the other coefficients? – Education
All coefficients can be interpreted as partial derivatives. To see this, note that if

𝑬 Wage𝒊 education𝒊,male𝒊,videogames𝒊 ] = 𝛼 + 𝛽" ⋅ education! + 𝛽# ⋅ male! + 𝛽$ ⋅ videogames!
Then &(B[DEFG!])

&(GHIJEKLMN!)
= 𝛽"

We can then interpret our estimate of 𝛽", (denoted @𝜷𝟏) as follows:
Keeping all other factors constant, every increase in education by one unit (here: one year) 
is associated with an increase in expected monthly wages by $99.8.

The interpretation of standard error, t-value and p-value is the same. The coefficient on 
education is significantly different from zero (at the 5% level).

Interpreting Regression tables: 
Main table – Slope coefficients (continuous variables)



What about the other coefficients? – Male
Male is a dummy variable. Although the (mathematical) interpretation as partial 
derivative is the same, it is not very elegant to say we increase male by one unit.

For dummy variables, we can instead say:
Keeping all other factors constant, being male instead of female is associated 
with an $54.8 higher monthly wages.

The interpretation of standard error, t-value and p-value is the same. The 
coefficient on male (i.e. the conditional average difference between wages for 
males and female) is significantly different from zero (at the 5% level).

Interpreting Regression tables: 
Main table – slope coefficients (Dummy variables)



What about the other coefficients? – Videogames
The coefficient on videogames is not significantly different from zero. 

We say: Keeping everything else constant, every additional hour of videogames 
played is associated with $0.48 higher monthly wages. However, this association 
is not significantly different from zero.

We do not say: There is no association between videogames and wages. The 
effect of videogames on wages is zero.

Why? This is related to statistical testing. If the p-value is >0.05, we fail to reject 
the null hypothesis – but we cannot “accept” the null hypothesis.

Interpreting Regression tables: 
Main table – insignificant variables



This section gives us 
additional information on 
our model and how 
appropriate our model is.

The residual standard 
error gives the standard 
deviation of the residuals 
– the smaller the better.

Degrees of freedom is the 
number of observations 
used in the regression 
(3,000) minus the number 
of coefficients estimated 
(4). We generally want 
this to be at least 30.

Interpreting Regression tables: 
Below the table: Residual S.E. and DF



This section gives us 
additional information on 
our model and how 
appropriate our model is.

The multiple R-squared 
measures what share of 
the total variation in the 
outcome variable is 
explained by our model 
with our independet 
variables.

In most cases, it lies 
between 0 and 1.

Interpreting Regression tables: 
Below the table: R-squared



This section gives us 
additional information on 
our model and how 
appropriate our model is.

The adjusted R-squared 
adjusts R^2 for the 
number of independent 
variables in the model. 
The more independent 
variables we include, the 
more it is adjusted 
downwards.

It is can never be bigger 
than the multiple R-
squared value, and it can 
also be negative.

Interpreting Regression tables: 
Below the table: Adjusted R-squared



This section gives us 
additional information on 
our model and how 
appropriate our model is.

The F-statistic is used to 
test the null hypothesis 
that all coefficients on 
the independent variables 
are equal to zero. 

Under the null 
hypothesis, it is 
distributed like an F-
distribution, with [number 
of independent variables] 
and [regression df] 
degrees of freedom.

It lies between 0 and the 

Interpreting Regression tables: 
Below the table: F-statistic



This section gives us 
additional information on 
our model and how 
appropriate our model is.

Here, the F-statistic is 
very large, and the p-
value is less than 
2.2*10^-16.

Therefore, we reject the 
null that all coefficients 
are equal to zero.

We also say that the 
coefficients in our model 
are “jointly significant”.

Interpreting Regression tables: 
Below the table: F-statistic and joint significance



Your turn

Before, we said that we can use regressions:
1. To predict an individual’s wage, based on their information on other variables
2. To test whether any of the right-hand side variables is related to wages
3. To quantify the direction and strength of the relation between RHS variables 

and wages
4. To – cautiously – find a causal estimate of the effect of a RHS variable on 

wages.

Question 1
Predict (give your best guess for) the monthly wages of:
1. A female respondent with 17 years of education who played videogames for 5 

hours per week
2. A male respondent with 12 hours of education who played videogames for 1 

hour per week.



Your turn

Question 2
Test whether education is (significantly) related to wages.

Note: Our test is always conditional on the other variables in the model.

Before, we said that we can use regressions:
1. To predict an individual’s wage, based on their information on other variables
2. To test whether any of the right-hand side variables is related to wages
3. To quantify the direction and strength of the relation between RHS variables 

and wages
4. To – cautiously – find a causal estimate of the effect of a RHS variable on 

wages.



Your turn

Question 3
How much do we expect monthly wages to differ between:

1. An individual with 15 (undergrad) vs. 12 (high school) years of education?
2. Males and females?

Before, we said that we can use regressions:
1. To predict an individual’s wage, based on their information on other variables
2. To test whether any of the right-hand side variables is related to wages
3. To quantify the direction and strength of the relation between RHS variables 

and wages
4. To – cautiously – find a causal estimate of the effect of a RHS variable on 

wages.



Your turn

Question 4
We found that each additional year of education is associated with $100 higher 
monthly earnings. Can we interpret this as the causal effect of one additional year 
of education?
Hint: Do we still have any selection bias if we control for gender and videogames? 
Are there any additional omitted variables? Are there other sources of bias (model 
misspecification, reverse causality, …)

Before, we said that we can use regressions:
1. To predict an individual’s wage, based on their information on other variables
2. To test whether any of the right-hand side variables is related to wages
3. To quantify the direction and strength of the relation between RHS variables 

and wages
4. To – cautiously – find a causal estimate of the effect of a RHS variable on 

wages.
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Special Cases
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Case 1: Dummy independent variable

In this model, we regress 
an outcome variable on a 
dummy (0-1) independent 
variable.

Here, we ran a regression 
of monthly wages (in $) on 
a dummy (0-1) variable 
whether a respondent is 
male.
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Case 1: Dummy independent variable

In cases like this, we can interpret intercepts and coefficients together!

As before, the intercept is the expected value of the dependent variable – wages – if the independent 
variables – male – are zero. So it is simply the expected value of wages for females in our sample. 
The expected value for a specific group is just the mean, so the intercept shows the average wages for 
females in our sample - $3,200.



Case 1: Dummy independent variable

In cases like this, we can interpret intercepts and coefficients together!

The coefficient gives the difference between means between the two groups. On average, men earn 
$121.8 more than women. We can easily calculate the mean wages of men in the sample – they are 
$3,200+$121.8=$3,321.8.



Case 1: Dummy independent variable

Question 4

How would the regression output change if we ran a regression of wages on a dummy variable that is 
one if the respondent is female?

Can we run a regression that includes both a male dummy and a female dummy?
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Case 2: Dummy dependent variable

In this model, we regress a 
binary/dummy outcome 
variable on continuous 
independent variable.

Here, we ran a regression 
of a dummy (0-1) variable 
whether a respondent is 
male, on years of 
education.
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Case 2: Dummy dependent variable

In cases like this, we interpret the outcome as probability!

The intercept can be interpreted as follows: For respondents with zero years of education, we would 
expect the probability of them being male to be 0.19, or 19%. In other words: Among respondents with 
zero years of education, we would expect a share of 19% to be male.



In cases like this, we interpret the outcome as probability!

The coefficient on education can be interpreted as follows: For each additional year of education, we 
expect the probability to observe a male respondent to increase by 0.022, or 2.2 percentage points.

For example: If we observe an individual with 10 years of education, we expect them to be male with 
probability 0.19+0.22*10 = 0.41. Among individuals with 10 years of education, the share of males is 
expected to be 41%.

Case 2: Dummy dependent variable



Question 5

How would the regression output change if we ran a regression of a female dummy on education?

Case 2: Dummy dependent variable
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