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Any questions?

… Some comments on the evaluations asked
for more space to answer left-over questions

from the lecture: Now is the time!
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Recap



Recap: OVB (Very important!)

We can summarize everything of OVB in three equations. Let Yi
be the outcome variable, Xi our regressor of interest, and Zi the
”omitted” variable.

[Long regression] Yi = c1 + βLXi + δZi + ei
[Short regression] Yi = c2 + βSXi + ui

[Auxiliary regression] Zi = c3 + γXi + vi
Then, the Omitted variable bias formula states that:

βS︸︷︷︸
Short =

= βL︸︷︷︸
Long +

+ δ︸︷︷︸
Omitted ×

· γ︸︷︷︸
Included

We call δγ the omitted variable bias. We can appraise the
direction of the bias by multiplying our guesses for the signs of
δ and γ. If either δ = 0 or γ = 0, then OVB is zero! 2



Recap: Understanding bias in OLS regressions

• We can use the OLS formula to understand how bias
works in OLS regression

β̂1 =
Cov(Xi, Yi)
Var(Xi)

• For OVB: We know the true Yi and plug it in
• For measurement error: We know what Xi and plug it in
• Simplify using the following rules:
Var(X+ Y) = Var(X) + Var(Y) + 2Cov(X, Y)
Var(X− Y) = Var(X) + Var(Y)− 2Cov(X, Y)
Cov(aX+ bY, Z) = aCov(X, Z) + bCov(Y, Z)
Cov(X, X) = Var(X)
Var(aX) = a2 Var(X)
Cov(X, Y) = 0, if X and Y are independent.
Var(X) ≥ 0.
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Recap: Making OLS more interesting

• We saw that we can extend the simple OLS framework

Yi = β0 + β1Xi + ei

to something richer:

Yi = β0 + β1Xi + β2X2i + ei

• We will get to know many more versions of this today
• All questions of the type ”how is Yi expected to change if
we change Xi” can be solved with partial derivatives – in
this case:

∂Yi
∂Xi

=

β1 + 2 · β2 · Xi
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Interaction terms (Q6)



Interaction terms: Making OLS more interesting (Q6)

Let us consider the model

Yi = β0 + β1X1i + β2X2i + ei
where Yi is a country’s GDP per capita, X1i the value of its
natural resources, and X2i a measure of how democratic it is.

1. How do we interpret β1?

Keeping democracy fixed, increasing the value of a
country’s natural resources by one unit is associated with
β1 higher GDP per capita.

2. How do we interpret β2?
Keeping natural resources fixed, increasing a country’s
democracy score by one unit is associated with β2 higher
GDP per capita.
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Interaction Terms (ii) (Q6)

Now, let us extend the model to:

Yi = β0 + β1X1i + β2X2i + β3X1iX2i + ei

1. What is the ”effect” of X1i on Yi?

β1 + β3X2i
2. How do we interpret β1? The effect of an additional unit

of X1i , if X2i is equal to 0.
3. How do we interpret β2? The effect of an additional unit

of X2i , if X1i is equal to 0.
4. How do we interpret β1 + β3? The effect of an additional

unit of X1i , if X2i is equal to 1.

Rule of thumb: Always use partial derivatives to make sure
that you are right!
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Practice exam question: 1a)

The Ministry of Truth is interested in a rumour that air pollution
could impact mental health. One of the most harmful pollutants is
fine particulate matter PM2.5, which comes from operations that
involve the burning of fuels such as wood, oil, coal, etc. A research
team is sent to investigate the rumour. The team randomly selects
and surveys 19,920 people across 71 districts of the country. The key
variable, Exposure Ei, is a dummy variable equal to 1 if the individual
i is exposed to a large amount of PM2.5 in the last 24 hours, and 0
otherwise. The team also conducts a standardised questionnaire to
record depressive symptoms in the last month, called the Kessler
Psychological Distress scale (K6). The questionnaire results in a
score, Depressioni, that ranges from 0 to 24; and the higher the score,
the more severe the depressive symptoms for individual i. The
variable has a sample average of 2.96. Running regressions with
Depression Di as the dependent variable, you obtain the following
results:
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Practice exam question: 1a)

Dependent variable: Depression i

Regressor (1) (2) (3)

Exposure i 0.834 0.614 0.554
(0.032) (0.045) (0.042)

Exposure i× Female i 0.065
(0.024)

Female i −0.739 −0.825
(0.036) (0.066)

Agei 0.452
(0.132)

Age2i 0.524
(0.121)

Notes: All estimations contain a constant term. Robust standard errors are
in the parentheses. Agei is the age (years old) of individual i, and Age2i is the
square of Agei.
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Pratice Exam question: 1a)

a) Interpreting the coefficient in Column (1), a journalist,
Katherine, claims: ”Since participants are randomly selected,
we can infer that exposure to a large amount of PM2.5 does
cause depression.”
i. Explain carefully why Katherine is wrong, specifying the
direction of bias(es) if there is any. Which assumption(s) would
she need to impose for the causality claim to hold?
ii. What is the correct interpretation from Column (1) that
Katherine should have made?
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(Detailed) Suggested Answer: 1a)

i. Random selection is not the same thing as random assignment to
treatment! Survey respondents may be systematically different from each
other in ways that are correlated with depression and pollution exposure.
Therefore, the results from a regression can not be interpreted causally (and
are biased). A priori, it is unclear in which direction the bias would go, but
we could imagine that (Only one explanation needed for exam):
On rainy days, pollution is lower (-) and people may be reporting more
depression symptoms (+), leading to downward bias. More wealthy people
choose to live in less polluted areas (-) and they may have less depression
(e.g., better access to mental health resources) (-), leading to upward bias.
For the regression causality claim to hold, we need to assume that: People
exposed to pollution and those not exposed to pollution would have, on
average, the same depression level, had they been exposed to the same
level of pollution. In other words: Both groups would have to have the same
potential depression outcomes.
ii. On average, people that were exposed to pollution had a 0.8 points higher
score on the depression scale. The difference between the two groups is
significant at the 5% level. 10



Pratice Exam question: 1b)

b) Interpret column (2) of the regression table
i. A colleague notes the the coefficient on Femalei is
significant, and states: ”The effect of being female on
depression is significantly different from zero”. Do you agree
with the statement? Why or why not?
ii. How is pollution exposure related to depression, for men?
And how for women?
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(Detailed) Suggested Answer: 1b)

i. It is difficult to make such interpretations when interaction terms are
involved. Taking partial derivatives, the ”effect” of being female is:

∂Depressioni
∂Femalei

= −0.739+ 0.065 · Exposurei

We can do inference (and test significance) at Exposurei = 0 (just looking at
the coefficient for female, −0.739 is significant). We can also do it for any
other level of exposure, but for that we also need to take the other
coefficient into account and cannot just use the table.
Comment 1: Less relevant for the exam, but important to be aware of!
Comment 2: We can always do inference on the interaction term, which is
significant here!

ii. Taking partial derivatives, the ”effect” of pollution exposure is:
∂Depressioni
∂Exposurei

= 0.614+ 0.065 · Femalei

Hence, the ”effect” for Males is 0.614 and the ”effect” for Females is larger
(0.614+ 0.065 = 0.779). The effect of pollution is also signficantly larger
than for men, because the coefficient on the interaction term is significantly
different from zero.
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Logs (Q4)



Notes on logarithms (Q4)

• We can take logs of whole equations to get linear models
(problem set)

• We can also take logs of specific variables, especially when
they have long tails (wealth in the US, GDP per capita, etc.)

• We can get to the right interpretation of log-specifications
with just math

• But I will make your life easier with a cheat sheet.
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Logs: Cheatsheet (Wooldridge version) (Q4)

Summary of Functional Forms Involving Logarithms

Model LHS RHS Interpretation of β1
Level-level y x ∆y = β1∆x
Level-log y log(x) ∆y = (β1/100)%∆x
Log-level log(y) x %∆y = (100β1)∆x
Log-log log(y) log(x) %∆y = β1%∆x

Table taken from Wooldridge (2011)
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Logs: Cheatsheet II (Jonathan’s version) (Q4)

Model LHS RHS A change in
x by . . .

is associated
with a change
in y by . . .

Level-Level y x 1 unit β1 units
Level-Log y log(x) 1% β1/100 units
Log-Level log(y) x 1 unit 100β1%
Log-Log log(y) log(x) 1% β1%

If you want to get a bonus star from me, write ”approximately”
in log-interpretations.
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Topics we’ve glossed over so far



Any questions?

… Some comments on the evaluations asked
for more space to answer left-over questions

from the lecture: Now is the time!
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Bad controls

• Not all controls are good controls
• Some controls are called ”bad controls”. These are:

1. Variables that are themselves outcomes of a treatment:
What happens if you control for the change in English test
scores in the regression below?

Treatment Control

Change in Math Scores 2 1
Change in English Scores 2 1

2. Variables that moderate the treatment effect, e.g.
controlling for occupation choice in gender wage gap
regression . . .

• Rule of Thumb: Good controls are either pre-determined
or immutable characteristics.

• Another way to think about it: Controls help us make
”apples to apples” comparisons. Which apples matter? 16



What if the outcome variable is binary (a dummy variable)?

Let’s run the regression

Defaultedi = α+ β ˜Credit Scorei + ei
where Defaultedi is equal to 1 if individual i has ever defaulted
on a loan (mortgage, credit card, auto loan, etc.), and

˜Credit Scorei is i’s credit score, minus the average credit score
in the sample (Note: US credit scores range from 300 to 850
points).

1. You run a regression and get α̂=0.1. How do you interpret
this? Does this number make sense here?

2. Your estimate for β is β̂ = 0.001. Interpret.

With a dummy dependent variable, changing Xi by one unit
increases the probability of Yi = 1 by β̂ · 100 percentage points.

17
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Inference and the variance of β̂OLS (Q3)

The variance of the OLS estimator is Var(β̂OLS
1 ) = σ2

ϵ
N·Var(Xi)

.
We expect to get more precise estimates if

• The variance of Xi increases
• The variance of the error term ϵi decreases
• The sample size N increases
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Hypothesis testing

∣∣∣∣∣ β̂

SE(β̂)

∣∣∣∣∣ ≥ 1.96

⇔ | t-stat | ≥ 1.96
⇔ p-value ≤ 0.05

If you are testing the null hypothesis H0: β = 0, then all of
these are equivalent, and you can use any of these.

19


	Recap
	Interaction terms (Q6) 
	Logs (Q4)
	Topics we've glossed over so far

