Regression in Action: Bias, squares, and measurement error

Econ 140, Section 3

Jonathan Old

Roadmap

1. Recap
2. Selection bias in action: Omitted Variable Bias
3. Quadratic Terms
4. Measurement Error

Any questions?

... Remember - Every question is useful!

Recap

Recap: Selection bias

We saw that whenever we do a difference-in-means comparison (or a regression), we get:

Estimating the effect of Pads on grades

Let us start with a difference-in-means comparison:
$\Delta=E\left[\right.$ Grade $\left._{j} \mid \mathrm{Pad}{ }_{j}=1\right]-E\left[\right.$ Grade $\left._{j} \mid \mathrm{iPad}{ }_{i}=0\right]$

Causal Effect

$=E\left[\operatorname{Grade}_{(}(1) \mid\right.$ iPad $\left._{i}=1\right]-E\left[\right.$ Grade $_{3}(0) \mid$ iPad $\left._{i}=1\right]+$ $\mathrm{E}\left[\mathrm{Grade}_{i}(0) \mid \mathrm{PPad}_{i}=1\right]-\mathrm{E}\left[\mathrm{Grade}_{i}(0) \mid \mathrm{PPad}{ }_{i}=0\right]$
Use properties of expectations:
$=E\left[\right.$ Grade $_{i}(1)-$ Grade $\left._{i}(0) \mid \operatorname{iPad}_{j}=1\right]+$
$E\left[\operatorname{Grade}_{i}(0) \mid i \mathrm{Pad}_{i}=1\right]-E\left[\operatorname{Grade}_{i}(0) \mid \mathrm{iPad}_{i}=0\right]$
= ATT + Selection bias
Selection bias: Students with and without iPad have different potential grades: even if they both had iPads, they would be different.

Selection Bias

- We cannot observe them - so we can never be sure!
- Econometrics is all about uncertainty. You can always state that there are different possibilities and you cannot know for sure

Recap: How to think about Selection Bias

Figure 1: Selection bias

Selection bias in action: Omitted Variable Bias

Omitted Variable Bias (OVB)

Let's go through an example:
You are doing a summer internship with San-Francisco based tech company "Chirp", when your boss asks you to help evaluating the effect of "performance-based" or "incentive" pay on employees' job satisfaction. When you analyze the data, you realize that it's a mess. Until now, every manager could decide on the performance pay system in their team. Can you run a regression of job satisfaction on whether or not an individual works in a team that has a performance bonus in place?

You believe that:
Satisfaction $_{i}=\beta_{0}+\beta_{1}$ Performance pay $_{i}+\beta_{2}$ Manager quality $_{i}+u_{i}$
Manager quality $_{i}=\gamma_{0}+\gamma_{1}$ Performance pay $_{i}+v_{i}$

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i}
$$

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\begin{gathered}
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i} \\
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
\end{gathered}
$$

2. Solve this expression with what we know

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\begin{gathered}
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i} \\
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
\end{gathered}
$$

2. Solve this expression with what we know

$$
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
$$

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\begin{gathered}
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i} \\
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
\end{gathered}
$$

2. Solve this expression with what we know

$$
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}=\frac{\operatorname{Cov}\left(\beta_{0}+\beta_{1} P_{i}+\beta_{2} M_{i}+u_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
$$

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\begin{gathered}
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i} \\
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
\end{gathered}
$$

2. Solve this expression with what we know

$$
\begin{aligned}
\alpha_{1} & =\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}=\frac{\operatorname{Cov}\left(\beta_{0}+\beta_{1} P_{i}+\beta_{2} M_{i}+u_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)} \\
& =\beta_{1} \underbrace{\frac{\operatorname{Cov}\left(P_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=1}+\beta_{2} \underbrace{\frac{\operatorname{Cov}\left(M_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=\gamma_{1}}+\underbrace{\frac{\operatorname{Cov}\left(u_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=0, \text { by assumption }}
\end{aligned}
$$

OVB Question

1. Run a "short" regression of satisfaction $\left(S_{i}\right)$ on pay $\left(P_{i}\right)$:

$$
\begin{gathered}
\mathrm{S}_{i}=\alpha_{0}+\alpha_{1} \mathrm{P}_{i}+e_{i} \\
\alpha_{1}=\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}
\end{gathered}
$$

2. Solve this expression with what we know

$$
\begin{aligned}
\alpha_{1} & =\frac{\operatorname{Cov}\left(S_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}=\frac{\operatorname{Cov}\left(\beta_{0}+\beta_{1} P_{i}+\beta_{2} M_{i}+u_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)} \\
& =\beta_{1} \underbrace{\frac{\operatorname{Cov}\left(P_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=1}+\beta_{2} \underbrace{\frac{\operatorname{Cov}\left(M_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=\gamma_{1}}+\underbrace{\frac{\operatorname{Cov}\left(u_{i}, P_{i}\right)}{\operatorname{Var}\left(P_{i}\right)}}_{=0, \text { by assumption }} \\
& =\underbrace{\beta_{1}}_{\text {Actual effect }}+\underbrace{\beta_{2} \gamma_{1}}_{\text {Omitted variable bias }}
\end{aligned}
$$

The most important slide of this course (until the midterm)

We can summarize everything of OVB in three equations. Let Y_{i} be the outcome variable, X_{i} our regressor of interest, and Z_{i} the "omitted" variable.

$$
\begin{aligned}
\text { [Long regression] } & Y_{i}=c_{1}+\beta_{L} X_{i}+\delta Z_{i}+e_{i} \\
\text { [Short regression] } & Y_{i}=c_{2}+\beta_{S} X_{i}+u_{i} \\
\text { [Auxiliary regression] } & Z_{i}=c_{3}+\gamma X_{i}+v_{i}
\end{aligned}
$$

Then, the Omitted variable bias formula states that:

$$
\underbrace{\beta_{S}}_{\text {Short }=}=\underbrace{\beta_{L}}_{\text {Long }+}+\underbrace{\delta}_{\text {Omitted } \times} \cdot \underbrace{\gamma}_{\text {Included }}
$$

We call $\delta \gamma$ the omitted variable bias. We can appraise the direction of the bias by multiplying our guesses for the signs of δ and γ.

Wait a minute!

We saw that the OLS coefficient in the short regression is:

$$
\alpha_{1}=\underbrace{\beta_{1}}_{\text {Actual effect }}+\underbrace{\beta_{2} \gamma_{1}}_{\text {Omitted variable bias }}
$$

This looks awfully much like:

Estimating the effect of iPads on grades

Let us start with a difference-in-means comparison:

$$
\begin{aligned}
& \Delta=E\left[\operatorname{Grade}_{i} \mid \operatorname{PPad}{ }_{i}=1\right]-E\left[\operatorname{Grade}_{i} \mid i \mathrm{Pad}_{i}=0\right] \\
& \text { Add and subtract } E\left[\operatorname{Grade}_{;}(0) \mid \mathrm{PPad}_{i}=1\right] \\
& =E\left[\operatorname{Grade}_{i}(1) \mid i \operatorname{Pad}_{i}=1\right]-E\left[\operatorname{Grade}_{i}(0) \mid i \operatorname{Pad}_{i}=1\right] \quad+ \\
& E\left[\operatorname{Grade}_{i}(0) \mid i \operatorname{Pad}_{i}=1\right]-E\left[\operatorname{Grade}_{i}(0)| | \operatorname{Pad}_{i}=0\right] \\
& \text { Use properties of expectations: } \\
& =E\left[\operatorname{Grade}_{i}(1)-\operatorname{Grade}_{i}(0) \mid i \operatorname{Pad}_{i}=1\right] \quad+ \\
& E\left[\operatorname{Grade}_{i}(0) \mid i \operatorname{Pad}_{i}=1\right]-E\left[\operatorname{Grade}_{i}(0) \mid i \operatorname{Pad}_{i}=0\right] \\
& =\text { ATT }+ \text { Selection bias }
\end{aligned}
$$

Selection bias: Students with and without iPad have different potential grades: even if they both had iPads, they would be

Control variables

Control variables are additional variables (or covariates) included in a regression. We do this for various reasons (in decreasing order of importance):

- To remove selection bias / omitted variable bias
- To increase precision of our estimates
- To know about the (conditional/partial) correlation of other variables
- To better predict the outcome Let's see graphically how control variables work.

Any questions?

... Remember - Every question is useful!

Attendance and Evaluation

Please fill out a very short evaluation form here: https://forms.gle/7neuAJbkAv17mSEp6

Quadratic Terms

Quadratic Terms

See in RStudio

Measurement Error

Measurement Error

See on Blackboard and in RStudio.
If time permits, see on chatGPT.

